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Abstract

We study the family of minor related row family inequalities for the set covering
polyhedron related to circular matrices introduced in [8]. We provide a construction
to obtain facets with arbitrarily large coefficients. Moreover, we address the issue
of generating these inequalities via the Chvatal-Gomory rounding procedure and
provide examples of inequalities having Chvatal-rank strictly larger than one.
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1 Introduction

Given a (m x n)-matrix A with (0, 1)-entries and a cost vector ¢ € Z", the set
covering problem (SCP) can be stated as

min{c’z: Ax > 1,z € Z }.

It is a classic problem in combinatorial optimization with important practical
applications, but well-known to be hard to solve in general. One established
approach to tackle such problems is to study the polyhedral properties of their
sets of feasible solutions. The set covering polyhedron QQ*(A) is defined by the
convex hull of all feasible solutions of SCP, i.e., of the incidence vectors of all
covers of A. Its fractional relaxation QQ(A) is given by

Q(A) ={z e R} : Az > 1}.

In general, we have Q(A) # Q*(A), even when A belongs to the particular class
of circular matrices. For n € N, let [n] denote the additive group defined on
the set {1,...,n}, with integer addition modulo n. We consider the columns
(resp. rows) of A to be indexed by [n] (resp. by [m]). A is said to be a circular
matrix if its rows are the incidence vectors of a set I of cyclic intervals on
[n], with the property that no interval contains another one, i.e., A has no
dominating rows. A square circular matrix is called a circulant. In this case,
all intervals in I have the same number of elements k, and I contains all n
possible intervals of this size. Thus, a circulant is completely defined by the
two parameters n and k, and we shall denote it by CF.

Valid and facet defining inequalities for Q*(C*) have been studied for a
long time. The boolean facets include the system of the inequalities x > 0
and Az > 1 defining Q(C¥), as well as the rank constraint 17z > [#], which
has been shown to be valid for Q*(C*) and facet-defining if and only if n is
not a multiple of k [6]. More recently, the class of row family inequalities was
proposed in [3] and studied for certain minors of C*.

Given N C [n], the minor of A obtained by contraction of N, denoted
by A/N, is the submatrix of A that results after removing all columns with
indices in N and all dominating rows. A minor of a circular matrix A is called
a circulant minor if it is equal to a circulant matrix C*¥, up to permutation
of rows and columns. We shall denote this by A/N ~ C*,.

Conditions for the existence of circulant minors of a circulant matrix have
been studied in [1,5]. Let G¥ be a directed graph having [n] as the set of nodes
and all arcs of the form (5,7 + k), (j,j + k+ 1), for 1 < j < n. Circulant



minors can be characterized in terms of directed circuits in G¥.

Theorem 1.1 ([1]) Assume 2 < k <n—-1,2<n" <n, 0 < k—Fk <
min {k,n —n'}. C8/N =~ C¥ if and only if there evist d = ged(n —n/, k —
k') disjoint simple directed circuits in G¥, Dy, ... Dy, each having length

”_d”,,such that N = Ue_,V(D,).

Circulant minors of C* are known to induce valid (and in some cases
facet-defining) inequalities for Q*(C¥). The class of minor inequalities was
introduced in [2] and was further studied and generalized in [4,7]. In [§] it
was observed that a circulant minor C*/N a C¥ also induces a row family
inequality that either is equivalent to or enhances the corresponding minor
inequality. This minor related row family inequality (minor rfi) has the form

aij+(a+1)ijza[%w,

JEW JEW

where a € {0,..., k' —1} with @ = n’ mod &/, and W C N is the set of
nodes in the circuits D, that are heads of arcs of the form (j,j + &k + 1). In
[4] it was conjectured that rank and (1,2)-valued minor inequalities suffice to
describe Q*(C¥). In [7], a first example of a facet-defining (2, 3)-valued minor
inequality was presented. In this paper we show that there are circulant matri-
ces such that Q*(C¥) has facet-defining minor related row family inequalities
with arbitrarily large coefficients.

Moreover, we are interested in studying the difference between Q(C*) and
Q*(C*) in terms of the Chvétal-Gomory procedure. For given a € Z" and b ¢
Z, assume a’x > b is valid for Q(A) and tight for some z* € Q(A). Then the
inequality a”x > [b] is valid for Q*(A), but violated by z*. Such an inequality
is called a Chwvdtal-Gomory cut for Q(A) and the procedure for obtaining it
is the Chwdtal-Gomory procedure. The first Chvatal closure Q)'(A) is the set
of points of Q(A) satisfying all Chvatal-Gomory cuts. Let Q° := Q(A) and
Q" = (Q"") for all t € N. Evidently, Q*(A) € Q" € Q"' holds for every
t € N. Moreover, it is known that there exists a finite £ € N with Q' = Q*(A);
the smallest such # is the Chuvdtal-rank of Q(A). An inequality is said to have
Chudtal-depth equal to t if it is valid for Qf, but not valid for Q*~*.

The Chvétal-rank of Q(C*) has been addressed in several previous works.
Any minor inequality has Chvatal-depth at most one. On the other hand,
it has been observed in [3] that this might not be the case for row family
inequalities. In this paper, we provide examples of minor rfi’s with Chvatal-
depth strictly larger than one.



2 Facets with arbitrarily large coefficients

In the following we provide a construction to show that minor related row
family inequalities with arbitrarily large coefficients can occur as facets of
Q*(A), even in the particular case when A is a circulant matrix C.

Let a € N with @ > 6 and define n := (o« — 1)(a + 1), k := a. Moreover,
consider the finite sequences of natural numbers given by

ng = (@ —1)(a —a) ko =a—a—1,
where a takes values from the set S := {1, e L%J — 1}. It is straightforward
to verify that Cke is a circulant minor of C%, for all @ € S. Indeed, the
conditions of Theorem 1.1 are satisfied as G contains d = a + 1 disjoint
simple directed circuits, each one consisting of a — 1 arcs of length k + 1. Let
W, denote the union of the sets of nodes of these circuits. Moreover, since
2a+1 < a, it follows that a < @« —a — 1 and

ne (a—1)(a—a) a
e = — < 1.
ke a—a—1 OhLa—ot—l ot

Hence, [Z—Z-‘ =a+1and n, = a mod k,,Va € S. The minor related row

family inequality of Q*(C¥) induced by Cke is
aij+(a+1)ij2a(a+1). (1)
JEWa JEWa
Theorem 2.1 Inequality (1) defines a facet of Q*(C*) if ged(a, a0 — 1) = 1.

In particular, if & —1 is a prime number then Q*(C?,_,) has facets steming
from minor rfi’s with all possible coefficients a, a + 1, for 1 < a < L%J — 1.

Example 2.2 Choosing o« = 8, we obtain that C§; contains all circulant
minors of the form Cféia) with a € {1,2,3}. As o — 1 is prime, these minors

C4s, C2y, C% induce (a,a + 1)-valued facets of Q*(Cg;).

3 On the Chvatal-depth of minor rfi’s

Here, we study the Chvatal-depth of the above defined minor rfi’s and address
both upper and lower bounds for their Chvatal-depth. Indeed, the construc-
tion of the previous section can be employed to illustrate a possible way to



obtain minor related row family inequalities from inequalities with smaller
coefficients by applying the Chvatal-Gomory rounding procedure.

Lemma 3.1 For any a € {2, o [%J — 1}, the inequality (1) induced by a
circulant minor isomoprhic to ng can be obtained from inequalities induced
by circulant minors isomorphic to C’,’igj and from the rank inequality of C*
with a single application of the Chuvdtal-Gomory rounding procedure.

If @ = 1 then (1) is the minor inequality defined in [2]. This inequality
is known to have Chvatal-depth at most one. The same holds for the rank
inequality of C*, which has rank equal to one if k does not divide n, and equal
to zero otherwise. As a consequence, the next result follows.

Theorem 3.2 The (a,a + 1)-valued inequality (1) of Q*(CE) induced by Cle
has Chuvdtal-depth at most a.

Example 3.3 The minor inequality of Q*(C§;) induced by C3 from Example
2.2 equals 3z(V — W,) + 4x(W,) > 27. It has Chvatal-depth at most 3 since
it can be obtained from the facets induced by C§, which, in turn, can be
generated by the facets induced by C%y having Chvdtal-depth 1.

On the other hand, the following lemma provides a necessary condition for
a minor rfi to have Chvétal-depth strictly larger than one.

Lemma 3.4 If a> < (a —a — 1)(a — 1) then the inequality (1) induced by
C’,’jg cannot be obtained from the inequalities in the system defining Q(CF) by
a single application of the Chvdtal-Gomory rounding procedure.

The last result does not necessarily imply that the inequality induced by
the minor C’T’fg has Chvatal-depth larger than one, as it can still be obtained
as a nonnegative combination of other inequalities with Chvétal-depth equal
to one. However, this cannot be the case if the studied inequality defines a
facet of Q*(C¥). Together with Theorem 2.1, this implies:

Theorem 3.5 If (a —a — 1)(a — 1) > a* and ged(a,o — 1) = 1 then the
inequality (1) induced by Cﬁz has Chuvdtal-depth strictly larger than one.

In particular, choosing a = 2 it follows that Q(C¢;_,) has Chvétal-rank
strictly larger than one for all even o > 8. The smallest such example with
a=2and a =8 is Q(CF;) as Q*(CF,) has a facet with Chvatal-depth larger
than one induced by the minor C%,.



4 Concluding remarks

We provided a construction for facets of Q*(CF) with arbitrarily large coef-
ficients, belonging to the class of minor rfi’s. Under the conditions in The-
orem 3.5 these facets may have Chvatal-depth strictly larger than one. In
this regard, minor rfi’s differ from other previously described minor induced
inequalities for Q*(C*), which are known to have Chvatal-depth at most one.
As future work, we intend to investigate whether larger lower bounds on the
Chvatal-depth can be proven for inequalities with large coefficients.

Conversely, we have shown that a (a,a + 1)-valued minor rfi constructed
in the way proposed here cannot have Chvatal-depth larger than a. A subject
of future research is to determine whether this upper bound holds for any
(a,a + 1)-valued minor related row family inequality.
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Appendix

Here we provide the proofs of the previously presented results that have been
omitted from the abstract due to space restrictions.

Proof. [of Theorem 2.1] Since k, does not divide n,, the rank inequality
defines a facet of Q*(C¥*). Thus, there exist n, = (o — 1)(a — a) covers of
C’T’fz with affinely independent incidence vectors, each one having cardinality

{%-‘ = a + 1. These covers trivially induce covers of C* whose elements

belong to W, := [n] \ W,, and whose incidence vectors z!, ... 2" are linearly
independent roots of (1).

We construct n — n, further roots of this inequality. For this purpose, we
consider a special embedding of W, and W, in [n]. Let [n] be partitioned into
a — 1 blocks By, ..., B,_1, each one consisting of o + 1 consecutive elements.
The first & — a elements of each block belong to W, while the last a + 1
elements belong to W, (each of these to a different circuit in G¥). Denote by
v, the i-th element of block By, with 1 <i<a+land1</<a-—1.

For1</<a-—1,let V,:= {vg‘_“+ta 0<t< o —a}. Observe that
Vi CW,, Vg‘ = a—a, and that the last element of V, is v}, ,_,_;. Moreover
consider the permutation of the elements of W, given by:

o a—a+1 a+1 « a—a+2
Vi = (v R/ T iy ), Vi</i<a-1,

Wa = (‘/la ‘/27 teey Va—l)-

It can be verified that any cyclic interval C; consisting of a consecutive ele-
ments from W, intersects a consecutive blocks By, ..., Byi,_1. Furthermore,
the distance between two elements of C; belonging to two consecutive blocks
is either o or a — 1. Thus, C; U Vi—atasr1 is a cover of Ck consisting of o — a
nodes in W, and a nodes in W,. Its incidence vector @/ is a root of (1).

Consider the square matrix having as rows the n, roots x!,... 2" and
the n — n, roots T',..., 7" "e. After adequate sorting of rows and columns,
this matrix can be put in the form:

co+l| 0

This matrix is non sigular if and only if the matrix C}_, is non singular,
which is the case if ged(n — ng,a) = 1. Since n —n, = (o — 1)(a + 1), the
result follows. O



Proof. [of Lemma 3.1] Consider again the set W, inducing inequality (1). As
observed above, W, is the union of the node set of a+1 disjoint simple directed
circuits DY, ..., D in G*. Assume a > 2 and define W' _, := W,\V(D"), for
1<r< a—|—1. Then C*/Wr | is a circulant minor of C* and the corresponding
row family inequality has the form

(a—1) Z T +a Z z; > (a—1)(a+1).

JEWI_, IS

Adding up all inequalities for 1 <r < a4 1 together with the rank inequality
Z?:l x; > « yields

[(a+1)(a—1)+1]2xj [a* + (a—1) + ij_a—l(a%—l)jta
JEWa JEWa
& a2ij+a(a+1)2xj2a2(a—l—l)—1.
JEWa JEWa

Dividing the last inequality by a and rounding up the right-hand side, we
obtain (1). O

Proof. [of Lemma 3.4] For simplicity in the notation, let A := CF¥ b =
a(a+1), and ¢ € R™ be the vector consisting of the left-hand side coefficients
of the inequality, i.e.,

a, if 7 & W,

a + 1, otherwise,

The inequality ¢’z > b can be obtained by a single application of the Chvatal-
Gomory rounding procedure if and only if there exists a vector of multiplicators
y € R"™ such that

ATy <,
(LP) ¢ 1Ty > b —1,
y > 0.

Consider the relaxation RLP of LP obtained by changing the strict in-
equality 17y > b —1 to 1Ty > b — 1. Due to Farkas Lemma, RLP has no
solution if and only if the following system of inequalities on the variables



A € R"™ 6 € R has a solution:

AN =61 >0,
(FLP) ¢ ¢"A—4d(b—1) <0,
A, 6> 0.

If a> < (¢ —a —1)(a — 1), one feasible solution for FLP is given by

1,if 5 & W,
Aj = i ¢ d=a—a—1.
0, otherwise.

Indeed, observe that computing A\ results in adding all columns of A corre-
sponding to the circulant minor Cﬁ;. On the rows correspondig to the minor,
this sum is equal to k, = a — a — 1. All other rows where deleted during
contraction and therefore must dominate a row in the circulant, so this sum
is larger than or equal to k,. Hence, A\ — 61 > 0. Additionally,

'\ = Zcj:ana:a(a—l)(a—a):aa(a—a—1)+a2
JEWa
<(a—a—=1)(ala+1)—1)=06(b—-1),

which shows that the second inequality in FLP is also fulfilled. Hence, RLP
and the more restricted system LP have no feasible solutions. O
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